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1 Introduction 

The general idea of distributed robotics (or multi- 
robot systems) is that teams of robots, deployed to  
achieve a common goal, can outperform individual 
robots in terms of efficiency and quality and, in some 
cases, can perform tasks that a single robot cannot. 
Consider, for example, Micro Air Vehicles (MAVs), 
each of which has an extremely small payload capac- 
ity. Though individual MAVs may have limited ca- 
pabilities, teams of MAVs, possibly carrying different 
payloads, can be deployed as a group to perform com- 
plex tasks. Groups of robots provide an added level 
of robustness, fault tolerance, and flexibility over in- 
dividuals, as the failure of one robot does not result 
in the failure of the mission, as long as the remain- 
ing robots can redistribute and share the tasks of the 
failed robot. Examples of tasks appropriate for robot 
teams are large area surveillance, environmental mon- 
itoring, large object transportation, planetary explo- 
ration, and hazardous waste cleanup. 

In this paper, we focus on the task of large area 
surveillance. Given an area to be surveilled and a 
team of MAVs with appropriate sensors, the task is 
to dynamically distribute the MAVs appropriately in 
the surveillance area for maximum coverage based on 
features present on the ground, and to  adjust this dis- 
tribution over time as changes in the team or on the 
ground occur. We have developed a system that will 
learn rule sets for controlling the individual MAVs in a 
distributed surveillance team. Since each rule set gov- 
erns an individual MAV, control of the overall behav- 
ior of the entire team is distributed; there is no single 
entity controlling the actions of the entire team. Cur- 
rently, all members of the MAV team utilize the same 
rule set; specialization of individual MAVs through the 
evolution of unique rule sets is a logical extension to  
this work. 

A Genetic Algorithm (GA) is used to  learn the 
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MAV rule sets. A GA is a search method based on 
principles from natural selection and genetic reproduc- 
tion. GAS have been successfully applied to  a wide 
range of problems, including optimization, classifica- 
tion, and design. The typical GA evolves the compo- 
sition of fixed length individuals, each of which repre- 
sents a potential solution to  the problem to be solved. 
There has been increasing interest in the evolution of 
variable length individuals in which both the size and 
the composition of a solution are dynamically evolved 
by a GA. The increased flexibility and evolvability of 
variable length systems appears to  be beneficial to the 
GA's search process. In particular, studies have found 
interesting links between parsimony pressure (reward- 
ing for compactness and small size), mutation rate, 
and evolved genome length and fitness. Size issues are 
important in the evolution of rule sets. Smaller rule 
sets require less time to  evaluate; larger rule sets are 
capable of containing more specific rules. In this pa- 
per, we examine some of the issues regarding variable 
length GAS as we investigate the evolution of variable 
sized rule sets for controlling MAVs. 

2 Related Work 

2.1 Multiple Robot Systems 

A number of researchers have built multi-robot sys- 
tems in order to  investigate the cooperation and 
pooled capabilities of distributed robots, focusing on 
team organization, interaction and task performance. 
Using different levels of control strategies, Mataric [16] 
has used groups of up to  twenty mobile robots to  study 
group behavior. Each robot used a measure of local 
population density and population gradient to  balance 
its behavior between collision and isolation. Kube and 
Zhang [14] have shown how a team of five robots with- 
out explicit communication can cooperate in a collec- 
tive box pushing task. Arkin [2] has shown that the 
behavior of robots in a team can be composed of a 
collection of motor schema, and the robots will alter- 
nate among a number of states (forage, acquire, etc.) 
in order to  find and deliver certain objects. Agah and 
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Bekey [l] investigated the development of a specific 
theory of interactions and learning among multiple 
robots performing certain tasks: This work showed the 
feasibility of a robot colony in achieving global objec- 
tives, when each robot is provided with only local goals 
and information. Goss and Deneubourg [9] studied 
chain-making behavior in robots, where robots spread 
themselves out in the environment while remaining in 
contact with each other. The fact that robots could 
function as beacons effectively enlarges the area of cov- 
erage. 

Utilization of GAS in evolving robot controllers 
has been investigated in a number of research efforts 
[5, 6 ,  10, 12, 23, 20, 21, 11. The work in this paper ex- 
tends previous work in several ways. First, this work 
is oriented towards control of distributed unmanned 
air vehicles, not land-based vehicles. In addition, this 
study will focus on the dynamics of evolving variable 
sized rule sets, including (1) the effects of both ini- 
tial and evolved rule set sizes on the performance of a 
robot colony and (2) the role of parsimony pressure in 
evolutionary robotics. 

2.2 Variable Length GA Representations 

Within evolutionary computation, variable length rep- 
resentations are most prominent in genetic program- 
ming (GP), a variant of the GA which directly evolves 
programs that vary in both size and content. Inter- 
estingly, with no bound on size, GP tends to evolve 
programs that are much larger than necessary, con- 
taining sections of code that are never used [3, 131. 
Though many early efforts focused on "editing out" 
these excess regions, later studies indicate that the size 
of evolved programs may affect their fitness and evolv- 
ability [15, 17, 19, 221. 

Although most GA applications do not use variable 
length genomes, there are several examples in which 
variable length genomes have been used successfully. 
The messyGA [8] employs' individuals whose length 
and content vary dynamically. The flexibility provided 
by this representation appears to be advantageous in 
deceptive problems. The SAMUEL learning system 
evolves variable length rule sets and has been used to 
develop collision avoidance, tracking, and other behav- 
iors for mobile robots. It uses detailed, high-level rules 
and heuristic techniques for modifying rule sets. The 
Virtual Virus (VIV) project [4] investigated the link 
between mutation rate and evolved length in a vari- 
able length GA system [18]. Studies found that parsi- 
mony pressure, is essential to both keeping individuals 
manageable in size and in maintaining reasonable fit- 
ness. More interestingly, there appears to be a direct 

connection between the evolved length and fitness of 
individuals and the mutation rate. The work described 
here will be compared to some of the conclusions from 
the VIV project. 

3 Experimental Details 

The goal of this work is to develop a system that is able 
to  learn rule sets for controlling the behavior of a team 
of MAVs that are continuously surveilling a specified 
area. The learning mechanism is a genetic algorithm 
which evolves the rule sets that govern MAV behav- 
ior. The fitness of the evolved rule sets is determined 
by the performance of a team of MAVs in a simulated 
world. In this section, we describe in detail the prob- 
lem to which we apply our MAV team, a simulator 
that is used to  evaluate MAV performance, and the 
evolutionary learning system. 

3.1 Large Area Surveillance 

In this paper, we focus on the task of large area surveil- 
lance. Multi-robot teams are ideal for such a task for 
several reasons: (1) a team of robots can continuously 
surveil the entire area in parallel, (2) different types of 
robots may be sent to surveil different types of areas, 
(3) teams of multiple, distributed robots may be more 
robust and fault-tolerant, as the loss of a single robot 
does not necessarily result in failure of the mission, 
and (4) teams of small, inexpensive robots may be less 
expensive and less detectable than a single larger vehi- 
cle. Given a specified geographical area and a team of 
autonomous MAVs, the MAVs must dynamically po- 
sition themselves to  provide maximum coverage of the 
ground. Different features on the ground may gener- 
ate different levels of interest, requiring more or less 
MAVs to adequately surveil. For example, military 
bases, airports, ports, and other strategic areas can 
be considered areas of high interest which would re- 
quire increased surveillance, i.e., more MAVs. Rural 
areas and open water may be considered areas of low 
interest, requiring fewer vehicles to  cover. In addition, 
the total number of MAVs involved in the task may 
change over time as individual MAVs exhaust battery 
power, as MAVs are destroyed by outside forces, or as 
new MAVs are deployed. Interest levels on the ground 
may also change with time. The full team of MAVs 
should be able to  dynamically adapt their behavior to  
the size of the team and to  changes on the ground. 

Our goal is to  develop a system that will learn rule 
sets for controlling individual MAV behavior that al- 
lows a team of multiple MAVs to successfully perform 
large area surveillance. We are particularly interested 
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in the factors that affect the size of the final evolved 
solution, i.e. the number of rules in a rule set. So- 
lution size is important for several reasons. Larger 
solutions may contain more detailed rules, but require 
more processing time. On an autonomous robot where 
resources are limited, CPU processing time is valuable. 
Smaller solutions are quicker to process and are more 
likely to contain generalized rules, but may not be able 
to handle all necessary situations. Previous work in- 
dicates that the size of evolved solutions may be af- 
fected by GA parameters such as parsimony pressure 
and mutation rate [18]. 
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3.2 Problem Representation and Simulation 

We use a simulator to evaluate the performance of 
MAV teams in this study. The simulator is initialized 
with a number of parameters that specify the envi- 
ronment, the MAV team, and other variables of the 
experiment. The simulation defines the world within 
which the MAVs move about, sense each other and the 
ground, while performing their task of surveilling the 
region. In these experiments, MAVs are assumed to 
have enough energy capacity to function throughout 
the entire experiment although they are destroyed if 
they collide with one another or go beyond the bound- 
aries of the surveillance area. All areas of the ground 
currently have the same interest level; therefore, good 
solutions should distribute the MAVs equally over the 
entire surveillance area. Figure 1 shows a snapshot 
of a sample run from the MAV simulator. Initially, 
all MAVs in a simulation are lined up along the west 
border of the surveillance area. 

In the current simulation, all MAVs are identical in 
configuration and all MAVs are governed by the same 
rule set. Each MAV has eight sensors, distributed 
around its perimeter, which indicate if anything (e.g. 
another MAV or a border) is within a certain range in 
that direction. This sensor range is specified in the ini- 
tial parameters of the simulator and is represented in 
Figure 1 as a large black circle around each MAV. Sen- 
sors cannot detect the number or distance of objects 
within their range. As a result, sensor data is binary: 
“1” indicates that an object has been detected, “0” 
indicates that no object is detected. A survey range 
is also initialized for each MAV; this value determines 
the area of ground that a MAV can detect beneath 
itself. In Figure 1, the survey range is the white area 
surrounding each MAV. 

Each MAV is controlled by its rule set. The rule 
set specifies which action should be taken at any time 
step given the sensor data. As shown in Figure 2, 
each rule consists of a condition and an action clause. 

1 001 

Figure 1: Sample run from the MAV simulator. 

Move? 

Figure 2: A MAV rule. 

Sensor data is compared to the condition clause of each 
rule in the rule set. The rule with the best match is 
selected. If multiple rules qualify as the best match, 
one is chosen at random from the candidates. If the 
degree of match of the selected rule exceeds a given 
threshold, the action clause of that rule is executed. 
The action clause of a rule consists of two fields. The 
first field indications whether the MAV should move 
forward or not. The second field indicates the direction 
in which the MAV should turn. A turn can be in one of 
the eight compass directions. Although geometrically 
diagonal moves (NE, NW, SW, SE) result in larger 
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procedure CA 
begin 

initialize population; 
while termination condition not satisfied do 
begin 

select parents from population; 
create copies of selected parents; 
apply genetic operators to Offspring; 
perform evaluations of offspring; 
insert offspring into population; 

end 
end. 

Figure 3: A genetic algorithm. 

changes in position, they are assumed to  take place in 
one time step, similar to non-diagonal moves (E, N ,  
W, S). Every MAV performs this evaluation of rules 
and sensor data once in each time step and executes 
an action if the matching threshold is exceeded. 

At every time step, we calculate the percentage of 
the surveillance area that is covered by the combined 
survey ranges of all of the MAVs. This value is aver- 
aged over the entire run and returned as an evaluation 
of the performance of that run. 

3.3 The Genetic Algorithm 

Some features that distinguish genetic algorithms from 
other search methods are: (1) a population of individ- 
uals that can be interpreted as candidate solutions to  
the problem to  be solved, (2) a fitness function that 
evaluates how good an individual is as a solution to  the 
given problem, (3) the competitive selection of individ- 
uals for reproduction, based on the fitness of each in- 
dividual, and (4) idealized genetic operators that alter 
the selected individuals in order to create new individ- 
uals for further testing. A GA simulates the dynamics 
of population genetics by maintaining a population of 
individuals that evolves over time in response to  the 
observed performance of its individuals in their oper- 
ational environment. The fitness function is used to  
evaluate each individual in a population. Selection ex- 
ploits and propagates good solutions while genetic op- 
erators allow a GA to further explore the search space 
for even better solutions. The basic paradigm is shown 
in Figure 3. For additional details, the reader should 
see [7, 111. 

For the experiments described in this paper, each 
individual of the GA population represents a complete 
rule set. Each rule in the rule set consists of a con- 
dition clause (eight bits) and an action clause (four 
bits). Individuals are interpreted into rule sets by tak- 

Population size 
Generations 
Maximum genome length 
Crossover operator 
Crossover rate 
Initial genome lengths 
Mutation rate 
Parsimony Diessure 

100 
200 
600 bits (50 rules) 
1 point random 
1.0 
60, 360 
0.001, 0.005, 0.01 
OFF. ON 

Table 1: GA parameter settings. 

Arena height 
Arena width 
Number of MAVs 
MAV size (radius) 
Survey range 
Sensor range 
Number of sensors 

- 
200 
200 
9 
5 
30 
50 
8 

Table 2: MAV simulator parameter settings. 

ing every twelve bits as a rule starting from the left 
end. Crossover points may occur at different locations 
on each parent, but must occur at rule boundaries, 
never within rules. As a result, all individual lengths 
are multiples of twelve. Mutation can occur at any 
location. To evaluate a particular individual of the 
population, the GA converts the individual to its cor- 
responding rule set, and runs the MAV simulator with 
this rule set. The performance of the MAV team using 
this rule set becomes the fitness of that individual. 

4 Experiments and Discussion 

Table 1 shows the GA parameter settings and Table 2 
shows the MAV simulator parameter settings used in 
the experiments described in this paper. The experi- 
ments described here focus on the effects of three GA 
parameter setting on two main aspects of the evolved 
MAV rule sets: fitness and length. Recall that longer 
individuals represent larger rule sets. As shown in Ta- 
ble l, we vary the initial genome length (size of indi- 
viduals in the initial population), the mutation rate, 
and whether or not parsimony pressure is applied. 

Figure 4 shows the best, average, and worst fitness 
of six example runs. The top row does not use par- 
simony pressure; the bottom row does. Columns one 
through three use mutation rates of 0.001, 0.005, and 
0.01, respectively. These plots indicate that lower mu- 
tation rates appear to  produce better individuals (rule 
sets). In addition, parsimony pressure appears to  have 
little effect on the plateau fitness, where plateau fitness 
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Figure 4: The top line shows the best fitness of each generation; the middle line shows average fitness; and the 
bottom line shows worst fitness. The left column uses a mutation rate of 0.001; the middle column, 0.005; and the 
right column, 0.01. The top row does not use parsimony pressure; the bottom row does. 

Figure 5:  Effects of initial genome length on plateau 
fitness. The top line shows the best fitness of each 
generation; the middle line shows average fitness; and 
the bottom line shows worst fitness. In the left plot, 
initial genome length is 60; in the right, 360. 

refers to  the fitness at which a run levels off. Figure 5 
shows that the genome length of the initial popula- 
tion also has little or no affect on the plateau fitness. 
Regarding the evolved length of the individuals or rule 
sets, parsimony pressure appears to be an important 
controlling factor. When there is no parsimony pres- 
sure, the GA evolves individuals that are as large as 
the maximum allowed size (600 bits in these experi- 
ments). When there is parsimony pressure, the GA 
evolves more compact individuals that, as indicated in 
Figure 4, have just as good fitness as when parsimony 
pressure is off. Figure 6 illustrates the fact that the 
evolved plateau length of the individuals is also inde- 
pendent of the length of the individuals in the initial 
population. 

Given the parameters settings from Table 2 The 

Figure 6: Effects of initial genome length on plateau 
length. The top line shows the longest individual of 
each generation; the middle line shows average length; 
and the bottom line shows shortest length. In the left 
plot, initial genome length is 60; in the right, 360. 

maximum percentage of the surveillance area that can 
be covered by the MAV team is 63.6%. The results 
here show that our system evolves rule sets that allow 
the team to continuously surveil approximately 40% 
of the area. Because the MAV team is typically con- 
tinuously moving, the actual percentage of the area 
monitored over a stretch of time may be larger than 
40%. These results were achieved with no fine tuning 
of the GA to  our specific problem. 

The fact that lower mutation rates result in better 
fitness and initial genome length does not affect the 
final evolved plateau fitness and length agrees with 
previous studies on variable length GA systems [ls]. 
Unlike Ramsey, et al. [18], where parsimony pressure 
produces higher fitness, parsimony pressure appears to  
have little effect on the plateau fitness of the MAV rule 
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sets. We speculate that the reason for this difference 
may be due in part to  differences in problem repre- 
sentations as well as differences in the difficulty of the 
problems. Further studies are planned to  investigate 
the impact of these differences. 

5 Future Work 

The future work on this project can continue in a 
number of directions. One approach is to introduce 
the quality of task performance in the computation of 
the fitness function (in addition to  the quantity). The 
quality metric would be a measure of how well the 
MAVs survey the given region over time. Another ex- 
tension is the addition of varying interests levels to  the 
ground that is being surveilled. Regions with high in- 
terest levels are more important and may require more 
MAVs, or more frequent surveys. Another planned di- 
rection is t o  transition from simulation to  real robots, 
testing the evolved rule sets on a team of physical 
robots, either with mobile robots on the ground or 
actual flying robots. 
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